Summary:
èŠç¹:
- AI tools like large language models (LLMs) are helping devrel with content creation, debugging code, analyzing data/trends, and improving support. Tools like ChatGPT, GitHub Copilot, and Google Bard can generate code samples, summarize text, and translate documents into multiple languages.
- However, LLMs have limitations
- they can generate outdated code or patterns, struggle with versioning APIs, and have trouble extracting key info from complex webpages. Tools like Contenda and Common Room are designed specifically for devrel use cases.
- Over time, devrel may need to adjust documentation and content to be more AI-friendly with more text explanations. Video alone doesn't work well for LLMs.
- LLMs bring speed and efficiency benefits for repetitive coding tasks, freeing up devrel to focus on core concepts. But output can be inconsistent, so still requires human oversight.
- AI will augment but not replace devrel, as relationship building and strategic thinking are still human skills. Overall, thoughtful incorporation of AI tools can boost devrel productivity and content quality.
- 倧èŠæš¡èšèªã¢ãã«ïŒLLMïŒã®ãããªAIããŒã«ã¯ãã³ã³ãã³ãäœæãã³ãŒãã®ãããã°ãããŒã¿ïŒåŸåã®åæããµããŒãã®æ¹åã§ããã¬ã«ãå©ããŠãããChatGPTãGitHub CopilotãGoogle Bardã®ãããªããŒã«ã¯ãã³ãŒããµã³ãã«ãçæããããã¹ããèŠçŽããããã¥ã¡ã³ããå€èšèªã«ç¿»èš³ããããšãã§ããã
- ããããLLMã«ã¯éçããããå€ãã³ãŒãããã¿ãŒã³ãçæããããããŒãžã§ã³ç®¡çAPIã§èŠåŽããããè€éãªãŠã§ãããŒãžããéèŠãªæ å ±ãæœåºããã®ãé£ããã£ãããããContendaãCommon Roomã®ãããªããŒã«ã¯ãdevrelã®ãŠãŒã¹ã±ãŒã¹ã«ç¹åããŠèšèšãããŠããã
- æéãçµã€ã«ã€ããŠãdevrelã¯ãããå€ãã®ããã¹ã説æã§ããAIãã¬ã³ããªãŒãªããã¥ã¡ã³ããšã³ã³ãã³ãã調æŽããå¿ èŠããããããããªããåç»ã ãã§ã¯LLMã¯ããŸãæ©èœããªãã
- LLMã¯ãå埩çãªã³ãŒãã£ã³ã°äœæ¥ã«ã¹ããŒããšå¹çã®å©ç¹ããããããdevrelãã³ã¢ã³ã³ã»ããã«éäžã§ããããã«ããŸããããããåºåã«ã¯äžè²«æ§ããªããããäŸç¶ãšããŠäººéã®ç£èŠãå¿ èŠã§ããã
- 人éé¢ä¿ã®æ§ç¯ãšæŠç¥çæèã¯äŸç¶ãšããŠäººéã®ã¹ãã«ã§ãããããAIã¯devrelãè£åŒ·ããããšã¯ãã£ãŠã眮ãæããããšã¯ãªãã ãããå šäœãšããŠãAIããŒã«ãææ ®æ·±ãåãå ¥ããããšã§ãdevrelã®çç£æ§ãšã³ã³ãã³ãã®è³ªãé«ããããšãã§ããã
Date æ¥ä» | 2023/02/02 |