Summary:
èŠç¹:
- Large language models (LLMs) like ChatGPT are trained on massive text corpora to predict the next word or token in a sequence. They have no real world knowledge, just statistical predictions.
- LLMs are already helping devrels with content creation, evaluating data, debugging code, and more. Tools like Contenda and Common Room specifically target devrel use cases.
- LLMs have limitations around outdated info, web scraping, and handling API versions. Need to be specific in prompts and check outputs.
- GitHub Copilot can speed up code sample creation across languages. Tools like Superface.ai handle integrations. Docky provides devrel-focused community support.
- LLMs are not a flash in the pan. Audit your docs for LLM friendliness. Don't treat them as a threat but consider how to incorporate into workflows over next 12-24 months.
- ChatGPTã®ãããªå€§èŠæš¡èšèªã¢ãã«ïŒLLMïŒã¯ãã·ãŒã±ã³ã¹ã®æ¬¡ã®åèªãããŒã¯ã³ãäºæž¬ããããã«ãèšå€§ãªããã¹ãã³ãŒãã¹ã§åŠç¿ãããŸããå®äžçã®ç¥èã¯ãªãããã çµ±èšçãªäºæž¬ãè¡ãã ãã§ãã
- LLMã¯ãã§ã«ãã³ã³ãã³ãã®äœæãããŒã¿ã®è©äŸ¡ãã³ãŒãã®ãããã°ãªã©ã§ããã¬ã«ã«åœ¹ç«ã£ãŠãããContendaãCommon Roomã®ãããªããŒã«ã¯ãç¹ã«ããã¬ã«ãŠãŒã¹ã±ãŒã¹ãã¿ãŒã²ããã«ããŠããã
- LLMã«ã¯ãå€ãæ å ±ããŠã§ãã¹ã¯ã¬ã€ãã³ã°ãAPIã®ããŒãžã§ã³ã«é¢ããå¶éããããããã³ããããã§ãã¯ã»ã¢ãŠãããããå ·äœçã«ããå¿ èŠãããã
- GitHub Copilotã¯ãèšèªéã®ã³ãŒããµã³ãã«äœæãã¹ããŒãã¢ããã§ãããSuperface.aiã®ãããªããŒã«ã¯çµ±åãåŠçãããDockyã¯devrelã«ç¹åããã³ãã¥ããã£ãµããŒããæäŸããã
- LLMã¯äžéæ§ã®ãã®ã§ã¯ãªããããªãã®ããã¥ã¡ã³ããLLMã«ãã¬ã³ããªãŒãã©ããç£æ»ããŠãã ãããLLMãè åšãšããŠæ±ãããä»åŸ12ïœ24ã¶æã®éã«ã¯ãŒã¯ãããŒã«ã©ã®ããã«çµã¿èŸŒãããæ€èšãããã
Date æ¥ä» | 2023/10/05 |